
Spreadsheets for
Python & Ruby

Ana Nelson

http://ananelson.com

What I’m Talking About

•  Why create Excel Spreadsheets?

•  Getting XLWT/Surpass
(in case you have trouble with Google)

•  How to use Surpass

•  Converting XLWT to Surpass

Why Excel?

•  CSV has “issues”
– Hard for users.

– Escaping & Quoting

– Unwanted Data Type Conversion

– Formats & Multiple Sheets

•  It’s a ridiculously easy way to extend the
functionality of your app.

XLWT/XLRD (Python)

•  http://pypi.python.org/pypi/xlwt

•  http://pypi.python.org/pypi/xlrd

•  http://groups.google.com/group/python-excel

•  https://secure.simplistix.co.uk/svn/xlwt

•  https://secure.simplistix.co.uk/svn/xlrd

Surpass (Ruby)

•  https://launchpad.net/surpass

•  http://rubyforge.org/projects/surpass/

•  bzr info http://ananelson.com/code/surpass

Using Surpass

•  Programmer interface not finalized.

•  Check out examples/ and spec/

•  NO FORMULA SUPPORT YET

Hello World!

require "rubygems"
require "surpass"

book = Workbook.new
ws = book.add_sheet

ws.write(0, 0, "Hello World")

book.save(__FILE__.gsub(/rb$/, "xls"))

 pygmentize -f rtf -o hello-world.rtf examples/hello-world.rb

Support for Images (.bmp)

 pygmentize -f rtf -o images.rtf examples/image.rb

require "rubygems"
require "surpass"

book = Workbook.new
ws = book.add_sheet('Image')
ws.insert_bitmap('examples/python.bmp', 2, 2)
ws.insert_bitmap('examples/python.bmp', 15, 2)

book.save(__FILE__.gsub(/rb$/, "xls"))

Lots of other goodies!

•  Number & Date Formats

•  Font Family, Size, Bold, Underline

•  Borders & Backgrounds

•  Merged Cells

•  Outlines

•  Column Widths & Row Heights

•  Don’t format a whole column…

Porting from Python to Ruby

•  No unit tests!
•  Getters & Setters
•  Remember JRuby/Jython

– Java is big-endian
– Ruby defaults to little-endian
– Must specify little-endian to have uniform

results across cRuby/Jruby
– Python?

 D, d | Double-precision float, native format 
 E | Double-precision float, little-endian byte order 
 e | Single-precision float, little-endian byte order 
 F, f | Single-precision float, native format 
 G | Double-precision float, network (big-endian) byte order 
 g | Single-precision float, network (big-endian) byte order 
 H | Hex string (high nibble first) 
 h | Hex string (low nibble first) 
 I | Unsigned integer 
 i | Integer 
 L | Unsigned long 
 l | Long 
 M | Quoted printable, MIME encoding (see RFC2045) 
 m | Base64 encoded string 
 N | Long, network (big-endian) byte order 
 n | Short, network (big-endian) byte-order 
 P | Pointer to a structure (fixed-length string) 
 p | Pointer to a null-terminated string 
 Q, q | 64-bit number 
 S | Unsigned short 
 s | Short 
 U | UTF-8 
 u | UU-encoded string 
 V | Long, little-endian byte order 
 v | Short, little-endian byte order 
 w | BER-compressed integer\fnm 
 X | Back up a byte 
 x | Null byte 
 Z | Same as ``a'', except that null is added with *

Pretty similar, actually…

class NumberRecord(BiffRecord):
 """
 This record represents a cell that contains an IEEE-754 floating-point value.
 """
 _REC_ID = 0x0203

 def __init__(self, row, col, xf_index, number):
 self._rec_data = pack('<3Hd', row, col, xf_index, number)

This record represents a cell that contains an IEEE-754 floating-point value.
class NumberRecord < BiffRecord
 RECORD_ID = 0x0203

 def initialize(row, col, xf_index, number)
 @record_data = [row, col, xf_index, number].pack('v3E')
 end
end

False Cognates

 def col(self, indx):
 if indx not in self.__cols:
 self.__cols[indx] = self.Column(indx, self)
 return self.__cols[indx]

 # Fetch the col indicated by index, or create it if necessary.
 def col(index)
 cols[index] ||= Column.new(index, self)
 end

Coming soon…

•  executable documentation

•  more & better unit tests

•  formula support

•  XLRD functionality

•  XLWT recent improvements

•  Optimization, Cleanup, New Features

•  Ruby-Python pack/unpack directive translator

